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DFT+NEGF methods are increasingly important tools for the interpretation and investigation of
physical phenomena in experiments. In this work we present a re-implementation of the TranSIESTA-
code [1] based on SIESTA [2].

The NEGF method relies on inverting the left hand side to obtain the Green’s function (here shown
with orbital indices p, v)
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where H, S and X; are respectively the Hamiltonian, overlap and self-energy matrices. The density
matrix is directly related to the Green’s function in equilibrium through D, o< G, .

The Hamiltonian will inherently contain many zero elements due to the linear combination of atomic
orbital (LCAO) approach in SIESTA. By taking advantage of this we can improve the performance and
reduce memory requirements of TranSIESTA. An entire re-write of the code have surmounted to drastic
performance improvements and memory reductions. We have implemented three variants of solution
methods for the code, 1) a block tri-diagonal inversion algorithm which scales linearly with constant
block sizes [3, 4] (LAPACK/BLAS), 2) a sparse inversion algorithm based on the MUItifrontal Massively
Parallel sparse direct Solver (MUMPS, [5, 6]) which selectively calculates inverse elements of a matrix,
and 3) the direct method using LAPACK/BLAS routines [7].

The block tri-diagonal and MUMPS routines can thus drastically decrease memory requirement of the
code by removing unneeded elements from the Hamiltonian and overlap on the left hand side of Equation
(1). The density matrix is equivalently only defined in the LCAO space which allows to only calculate
a subset of matrix elements of the Green’s function. This further reduces the memory requirement and
the computational complexity.

We here present data for our block tri-diagonal routine with an example of pristine graphene using
a 2 hexagon wide electrode and device. The basic unit cell is made up of 24 atoms and we increased
the length of the system by multiplying this unit cell going up to =~ 350 atoms. Our calculations are
performed on a 12 core XeonE5-2620@Q2GHz with 32GB of ram (= 2.67 GB per core) and with the exact
same settings for v3.2 and our work. The timings are seen in Fig. 1 together with the speedup of both
the equilibrium calculation and the non-equilibrium calculations. At around 300 atoms v3.2 exhausts the
memory in non-equilibrium which does not allow us to extend the analysis of comparison. However this
work allows extending the system to 2160 atoms and still a single non-equilibrium SCF iteration step
takes only 2351 s. Note that this is nearly a fourth of the time spent in v3.2 for 300 atoms!

Our implementation is generalised to handle N-terminal devices in TranSIESTA which will provide
calculations of complex systems such as those schematised in Fig. 2. Furthermore the calculation of slabs
(N = 1) within the method of NEGF will provide reduction in system sizes due to the removal of the
mirror plane by imposing strict bulk, thus removing spurious non-bulk effects associated with the surface
layers.
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Figure 1: A direct comparison of a pristine graphene calculation showing speed-ups in excess of 20x. We
could not go to higher number of atoms for v3.2 due to limited memory on the machine (2.67GB per
core), yet this work could handle 2160 atoms with a timing of 518s (Eq.), 2351 s (non-Eq.) per iteration.

Figure 2: N-terminal setups are now possible in the TranSIESTA-code (N > 1).
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